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I. INTRODUCTION 
 The action of shoaling waves, and wave breaking in the surf zone, in generating a wave-generated 

mean sea-level is well-known and has been extensively studied, see for instance the monographs of Mei (1983) 

and Svendsen (2006). The simplest model is obtained by averaging the oscillatory wave field over the wave 

phase to obtain a set of equations describing the evolution of the mean fields in the shoaling zone based on 

small-amplitude wave theory and then combining these with averaged mass and momentum equations in the 
surf zone, where empirical formulae are used for the breaking waves. These lead to a prediction of steady set-

down in the shoaling zone, and a set-up in the surf zone. This agrees quite well with experiments and 

observations, see Bowen et al (1968) for instance. However, these models assume that the sea bottom is rigid, 

and ignore the possible effects of sand transport by the wave currents, and the wave-generated mean currents. 

Hydrodynamic flow regimes where the mean currents essentially form one or more circulation cells are known 

as rip currents. These form due to forcing by longshore variability in the incident wave field, or the effect of 

longshore variability in the bottom topography (Kennedy 2003, 2005 ,Yu & Slinn 2003, Yu 2006 and others). 

They are often associated with significant bottom sediment transport, and are dangerous features on many surf 

beaches (Lascody 1998 & Kennedy 2005). 

 

There is a vast literature on rip current due to wave-current interactions, see the recent works by 
(Horikawa 1978 , Damgaard et al. 2002, Ozkan-Haller & Kirby 2003 ,Yu & Slinn 2003 , Yu 2006, Falques, 

Calvete & Monototo 1998a and Falques et al 1999b, Zhang et al 2004 and others) and the references therein. 

Our purpose in this paper is to exploit the fully developed but under-utilised wave-current interaction theory in 

the nearshore.In section 2 we record the usual wave-averaged mean field equations that are commonly used in 

the literature. In section 3 we introduce a description of the rip current formation and examine the consequences 

for both shoaling and surf zones. Then in section 4  we employ section 3  to a choice of linear depth profile. We 

conclude with a discussion in section 5. 

 

II. FORMULATION 
2.1  Wave field 

 In this section we recall the wave-averaged mean flow and wave action equations that are commonly 

used to describe the near-shore circulation (see Mei 1983 or Svendsen 2006 for instance). We suppose that the 
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depth and the mean flow are slowly-varying compared to the waves. Then we define a wave-phase averaging 

operator ff >=< , so that we can express all quantities as a mean field and a wave perturbation, denoted by a 

“tilde” overbar. For instance,  

 .
~

=    (1) 

 where   is the free surface elevation above the undisturbed depth )(= xhh . Then outside the surf zone, the 

representation for slowly-varying, small-amplitude waves is, in standard notation,  

 .cos),(
~

 atx :  (2) 

 Here ).(= txaa  is the wave amplitude and ),(= tx  is the phase, such that the wavenumber k , frequency 

  are given by  

 .==),(= tlkk    (3) 

 The local dispersion relation is  

 HgUk  tanh=,.= 2  (4) 

  

 .= 222 lkwhere   

Here ),( txU  is the slowly-varying depth-averaged mean current (see below), and ),()(=),( txxhtxH  . 

To leading order, the horizontal and vertical components of the wave velocity field are respectively  

 .sin
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)(sinh~,cos
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)(cosh~ 
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hz
aw

H

hz
a

k
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



 ::  (5) 

 Importantly, note that we have ignored here any reflected wave field, which is assumed to be very weak when 

the bottom topography is slowly varying. 

The basic equations governing the wave field is then the kinematic equation for conservation of waves  

 ,0=tk  (6) 

 which is obtained from (3) by cross-differentiation, the local dispersion relation (4), and the wave action 

equation for the wave amplitude  

 .0=)( AcA gt   (7) 

 Here /= EA , where /2= 2gaE  is the wave energy per unit mass, and 

)/=(,/==  ddckcUc ggkg   is the group velocity. Using the dispersion relation (4) in (6) we 

get  

 ,=  exgt kck  (8) 

 .= etgt c   (9) 

 Here the subscript “e” denotes the explicit derivative of ),,( txk  with respect to either x  or t , when the 

wavenumber k  is held fixed. In this water case these explicit derivatives arise through the dependence of   on 

the mean height H  and the mean current U . 

 

2.2  Mean fields 

 The equations governing the mean fields are obtained by averaging the depth-integrated Euler 

equations over the wave phase. Thus the averaged equation for conservation of mass is  

 .0=)(HUH t   (10) 

 Here hH =  where )(= xhh  is the time-independent undisturbed depth. For the velocity field we 

proceed in a slightly different way, that is we define  

 ,= 'uUu   (11) 

 where we define U  so that the mean momentum density is given by  

 ,><== dzuHUM
h


 (12) 

 But now we need to note that 
'u  does not necessarily have zero mean, and that U  and u  are not necessarily 
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the same. Indeed, from (11) and (12) we get that  

 .0>=<,><= dzuanduUu '

h

'




 

But )(= 2aOuu'  , so that >< 'u  is )( 2aO  and it follows that, correct to second order in wave amplitude,  

 .>=),0,(>=<<=,=



k

c

E
txuuHMwhereMHuM '

ww   (13) 

 The term wM  in (13) is called the wave momentum. 

Next, averaging the depth-integrated horizontal momentum equation yields (Mei 1983)  

 .>)=(<><.=).()( hhzpdzpIuuHUUHU ''

h
t  



 

Next an estimate of the bottom pressure term is made by averaging the vertical momentum equation to get  

 .><><.=)(>)=(< t
hh

dzwdzuwhghzp  




  

For slowly-varying small-amplitude waves, the integral terms on the right-hand side may be neglected, and so 

)(>)=(< hghzp   . Using this in the averaged horizontal momentum equation, and replacing the 

pressure p  with the dynamic pressure )(=  zpq  yields  

  gHSHUUHU t .=).(  (14) 

  

 .>
~

2
<>][=< 2 I

g
dzqIuuSwhere

h




  (15) 

 Here S  is the radiation stress tensor. In the absence of any background current, so that U  is )( 2aO , we may 

use the linearized expressions (2, 5) to find that  

 .]
2

1
[ I

c

c
E

E
kcS

g

g 


 (16) 

 where the phase speed /=c , correct to second order in the wave amplitude. 

 

2.3  Shoaling zone 

 These equations hold in the shoaling zone outside the surf zone (defined below). In summary, the 

equations to be solved are that for the conservation of waves (6) combined with the dispersion relation (4), the 

wave action equation (7), the averaged equation for conservation of mass (10) and the averaged equation for 

conservation of horizontal momentum (14), where the radiation stress tensor is given by (16). In this shoaling 

zone, we assume that wave amplitudes are small, and that there is no background current. Then all mean 

quantities are )( 2aO , and in particular we can systematically replace H  with h  throughout these 

equations.Next we shall suppose that )(= xhh  depends only on the offshore co-ordinate 0>x , where the 

undisturbed shoreline is at 0=x  defined by 0=(0)h . Further, in the near-shore region, including all of the 

surf zone, we shall assume that 0>xh . Then we seek steady solutions of the equation set in which all variables 

are independent of the time t , and are also independent of the transverse variable y . It then follows from the 

mean mass equation (10) that HU  is constant, and since 0=H  at the shoreline, it follows that we can set 

0=U  everywhere. Then in the dispersion relation (4) = . From the equation for conservation of waves 

(6) we see that the frequency   and the transverse wavenumber l  are constants, and the the offshore 

wavenumber k  is then determined from the dispersion relation (4). As is well-known, it then follows that as 

0H , || k , that is the waves refract towards the onshore direction, where we assume that the waves 

are propagating towards the shoreline so that 0<k . The wave action equation (7) reduces to gEc  is constant. 

Near the shore, we can assume that the shallow water approximation holds and then 
1/2)(ghcg  , so that  

 ,1/2

0

2

0

1/22 haha   (17) 
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 where 0a  is the wave amplitude at a location offshore where 0= hh . The surf zone )(=<,< bbb xhhhxx  

can then be defined by the criterion that bh  is that depth where crAha =/ , defining an empirical breaking 

condition. A suitable value is 0.44=crA , see Mei (1983) or Svendsen (2006). 

The last step is to find the wave set-up   from the mean momentum equation (14), which here 

becomes  

 ,,0=xx gHS   (18) 

  

 .)
2

1
(cos= 2 E

c

c
E

c

c
Swhere

gg
  

Here   is the angle between the wave direction and the onshore direction, and S  is the “ xx ” component of 

the tensor S . As 0h , /23,0, ESccg  , and we recover the well-known result of a wave set-

down in the shoaling zone  

 .
4

=
4

=
3/2

1/2

0

2

0

2

h

ha

h

a
  (19) 

 Here we have assumed that   is zero far offshore. Note that the first expression for   does not need the use 

of the shallow water approximation, as shown by Longuet-Higgins and Stewart (1962). 

 

2.4  Surf zone 

In the surf zone bb hhxx <<,0<<0 , we make the usual assumption (see Mei (1983) for instance) 

that the breaking wave height a2  is proportional to the total depth H , so that  

 ,
8

=,=2
22Hg

EorHa


  (20) 

 Here the constant   is determined empirically, and a typical value is 0.88.= . To determine the mean 

height hH = , we again use the mean momentum equation (14), but now assume that 

/2=/23= 2gHES   where /83= 2 , so that  

 ,
)(1

=,0=)(



 b

bxx

hh
HHthatsohHHHH  (21) 

 where the constant bbb hH =  is determined by requiring continuity of the total mean height at bxx = . 

Note that using (19)  

 ,/4= 3/21/2

0

2

0 bbb hhahH   

and since bH  must be positive, there is a restriction on either the deep-water wave amplitude 0a  or on the 

breaker depth bh ,  

 ./</4 5/2

0

5/22

0

2

0 hhha b  (22) 

 Note that the expression (21) is valid for any depth )(xh , although in the literature it is often derived only for a 

linear depth profile xh = . 

We are now in a position to determine the displaced shoreline sxx = , defined by the condition that 

0=H . That is, if )(= ss xhh  then  )/1(= shhH , where  

 ,)(1= bbs hh   (23) 

 Note that to use the expression (23) it may be necessary to extend the definition )(xh  into 0<x . For instance 

for a linear beach, xh = , this is straightforward, but for a quadratic beach profile, 
2= xh  , the extension 

for negative x  should be 
2= xh   say. Note that from (19),  
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 ,
4

=
3/2

1/2

0

2

0

b

b
h

ha
  

and, on combining this with the condition (22), it follows that the shoreline recedes (advances), that is 

0)0(><sh  when  

 ./<
4

<
1

,
1

<
4

5/2

0

5/2
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0
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5/2
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5/2
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h

h
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h

h

h

a
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b
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





 (24) 

 Curiously, this anomalous result does not seem to have been noticed previously [5] and [5]. Since there is an 

expectation that the shoreline should advance (see Dean and Dalrymple (2002) for instance), essentially it states 
that the present model is only valid for sufficiently small waves far offshore, defined by the first inequality in 

(24), which slightly refines the constraint (22).  

 

III. A GENERAL DESCRIPTION OF THE RIP CURRENT FORMATION 
 Here we consider a steady-state model driven by an incident wave field which has an imposed 

longshore variability. The wave field satisfies equation (7) which in the present steady-state case reduces to  

 .0=)sin()cos(  gg EcyEcx   (25) 

 Here we again assume that )(= xhh  and that consequently the frequency   and the longshore wavenumber 

l  are constants, while the onshore wavenumber K  is then determined from equation (4). We have the wave 

energy E  of the form  

 ,)(sin)(cos)(= 000 xGKyxFKyxEE   (26) 

 where the longshore period K/2  is imposed. These equations in the shoaling zone yields  

 0=sin)cos( 00  gxg cKFcE   (27) 

 0=sin)cos( 00  gxg cKEcF   (28) 

 0.=)cos( 0 xgcG   (29) 

 on collecting terms in Kycos , Kysin  and the constant term, which form three equations for 0E , 0F  and 

0G . Equation (29) easily yields that .=cos0 constantcG g   In shallow water, we may approximate by 

putting 
1/2ghcg   and 1cos  , so that then 

1/2

0 /hconstantG  . For the remaining equations we can use 

Snell’s law, bbb cc  =/sin=/sin  (the constant value, here evaluated at the breaker line), and the shallow-

water approximation to get that  

 ,0=})/){( 2

0

22

0 cEKccE bxx   (30) 

 while although 0F  satisfies the same equation, once 0E  has been found, then 0F  is given by either (27) or 

(28). In practice, 1<<Kc  and so approximately we can assume that constantcFE ),( 00 , the usual 

shallow-water expressions. Note that here ghc  . In the surf zone, the expressions )(),(),( 000 xGxFxE  is 

determined empirically. 
Once the expression (26) has been determined, we may then substitute into the expressions (27,28  & 

29) to obtain the radiation stress fields. Our aim here then is to describe how steady-state rip currents are forced 

by this longshore modulation of the incident wave field, especially in the surf zone. 

The forced two-dimensional shallow water equations that we use here are characteristic of many 

nearshore studies (Horikawa 1978 , Damgaard et al. 2002, Ozkan-Haller & Kirby 2003 ,Yu & Slinn 2003 , Yu 

2006, Falques, Calvete & Monototo 1998a and Falques et al 1999b, Zhang et al 2004 and others). Then, 

omitting the overbars as before, then equations (??) in the present steady-state case reduce to    

 ],[=][ xxHgyUVxUUH    (31) 
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 ],[=][ yyHgyVVxVUH    (32) 

  where the stress terms are defined;  

 .== 22211211 ySxSandySxS yx    (33) 

 Next we observe that equation (10) can be solved using a transport stream function ),( yx , that is  

 ,
1

=
1

= x
H

andy
H

U    (34) 

 Next, eliminating the pressure, we get the mean vorticity equation  

 x

y

y
x

xyyx
HHHH

][][=)()(


 





 (35) 

 where   is define as  

 .)()(== y

y

x
x

yx
HH

UV


  (36) 

 We shall solve this equation (35) in the shoaling zone bxx >  and in the surf zone bxx < , where as before 

bxx =  is the fixed breaker line. It will turn out that the wave forcing occurs only in the surf zone, but 

continuity implies that the currents generated in the surf zone must be continued into the shoaling zone.  

 

3.1  Shoaling zone 

 In bxx >  we shall assume that hH   as   is )( 2aO . Then we shall use the expressions [27 ,28] 

to evaluate the radiation stress tensor. For simplicity, we shall also use the shallow-water approximation that 

ghccg  , and so we get that  

 )
2

1
sin(=,cossin==,)

2

1
cos(= 2

222112
2

11   ESESSES  (37) 

 These expressions are in principal known at this stage, and so we can proceed to evaluate the forcing term on 

the right-hand side of (35). To assist with this we recall Snell’s law  

 bbhh  sin=sin  

where bh  and b  are the water depth and incidence angle at the breaker-line. Now the energy equation (25) has 

the approximate form  

 ,0=)sin()cos( yx cEcE    

and using Snell’s law, this can be written as  

 0,=)cossin()cos( 2

c

c
EEE x

yx    

 

 .
2

1
=

c

c
EEsoand x

xx   

We can also deduce from (25) that  

 ,0=)sin()cossin( 2
yx EE    

 

 .
2

1
= yy Esoand   

We can now evaluate the right-hand side of (35), and find that its identically zero,  

 0.=][][ x

y

y
x

hh


  

Thus in the shoaling zone there is no wave forcing in the mean vorticity equation, although of course there will 

be a mean pressure gradient. However, this does not concern us since here our aim is to find only the flow field. 

Note that the result that there is no wave forcing in the vorticity equation does  not need the specific form (26), 
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and is based solely on the steady-state wave energy equation (25). The specific form (26) is only used in the surf 

zone. 

With no forcing term, the vorticity equation (35) can be solved in the compact form, noting that we again 

approximate H  with h ,  

 .)(= F
h


 (38) 

 But here 0=)(F  from the boundary conditions in the deep water as x , where the flow field is zero. 

Thus our rip current model has zero vorticity in the shoaling zone. It follows that we must solve the equation  

 0,=)
1

()
1

(= yyxx
hh
   (39) 

 in bxx > . Since )(= xhh  we can seek solutions in the separated form  

 )()(= yYxX  (40) 

 with the outcome that  

 0.=,0=)( 2
2

YKY
h

XK

h

X
yyx

x   (41) 

 We note the separation constant LK /2=2   must not be zero, and is in fact chosen to be consistent with the 

modulation wavenumber of the wave forcing. Without loss of generality, we can choose  

 .sin= KyY  (42) 

 For each specific choice of )(xh  we must then solve for )(xX  in bxx > , with the boundary condition that 

0X  as x . We shall give details in the following subsections. Otherwise we complete the solution by 

solving the system (35) in the surf zone, and matching the solutions at the breakerline, bxx =  where the 

streamfunction   must be continuous, and in order to have a continuous velocity field we must also have that 

x  is continuous.  

3.2  Surf zone 

 To make sense of wave forcing, we assume that the expression (26) holds in this region. The functions 

)(),(),( 000 xGxFxE  are then determined empirically. To determine the wave forcing term in the mean 

vorticity equation (35) we shall assume that 1<<= b  so that, on using (??) and (37) we get that  

 .
2

1
=,

2

3
= yyxx EE   

Then (35) now becomes, where we again approximate H  with )(xh ,  

 ,
)(

=
2

=
~~

3/2

1/2

2 h

Eh

h

hE

h

E
xyyx

xyxyxy
   (43) 

 where here h/=
~

  is the potential vorticity. Since the wave forcing is given by (26), that is  

 ,)(sin)(cos)(= 000 xGKyxFKyxEE   (44) 

 we observe that the unmodulated term )(0 xG  plays no role here at all, although of course it will contribute to 

the wave setup. In order to match at bxx =  with the expression (42) for the streamfunction in the shoaling 

zone, we should try for a solution of (43) of the form  

 .<,)(sin)(= bxxinxGKyxF   (45) 

 The matching conditions for the streamfunction and velocity field at the breakerline bxx =  require that  

 .0=)(,0=)=(,)(=)(,)(=)( bxbbxbxbb xGxxGxXxFxXxF  

The expression (45) yields  

 GKyF
~

sin
~

=   (46) 

 where F
~

 and G
~

 are differential operators where they are defined as;  
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h

FK

h

F
F x

x

2

)(=
~

  (47) 

 
h

G
ZZG x

x =,=
~

 (48) 

 From equation (43) we get a set of three equations that are used to determine the rip-current flow field in the 

surf zone. These are namely;    

 ,0=)

~

(

~

xx
h

F
F

h

F
F   (49) 

 ,
)(

=))

~

(

~

(
3/2

0

1/2

h

Fh

h

G
F

h

F
G x

x  (50) 

 .0=
)

(
3/2

0

1/2

h

Eh x
 (51) 

  Equation (51) gives 
1/2

0 1/hE : , which is an unacceptable singularity as 0h . Hence we must infer that in 

the surf zone at least, 0=0E . The first of the three equations, that is (3.2a) suggests that   

 ,=

~

onstantwhereCisacCF
h

F
 (52) 

 and the second (3.2b) yields that  

 
3/2

0

1/2 )(
=))

~

((
h

Fh

h

G
CGF x

x  (53) 

  The boundary conditions at 0=x  where 0=h  are that both mass transport fields VU ,  should vanish, that 

is from (34) constant=  and 0=/hx , which implies that  

 .0=,0=,=,0== xat
h

G
constantGFF x

x  (54) 

 As above there are also the matching conditions for both F  and G  separately at the breakerline, that is for F  

we have that 

 b

b

bx

b

bx xxat
xX

xX

xF

xF
=,

)(

)(
=

)(

)(
 

where we note that here the right-hand side is a known quantity, depending only on K  and bx . Next we see 

that equation (52) reduces to  

 ChF
h

FK

h

F
x

x =)(
2

  (55) 

 Together with the boundary conditions at bxxx =0,=  this is essentially an eigenvalue problem for )(xF  

with eigenvalue C . In general it is solved approximately since we shall assume that 1<<bKx . Once )(xF  is 

known we can solve (53), together with the appropriate boundary conditions to get )(xG  to complete the 

solution. 

Note that the amplitude of )(xF  is an arbitrary constant in this solution, and so we can fix it by 

specifying its value at bxx =  say. Indeed the solution we have constructed is essentially a free vortex defined 

by KyxX sin)(  in the shoaling zone bxx > , and KyxF sin)(  in the surf zone bxx < , perturbed by a 

longshore component )(xG  in the surf zone. Note that in the presence of the wave forcing, both GF,  are 

non-zero, see (53). It is significant that unlike the longshore currents considered in the basic state which depend 

on an  ad hoc frictional parametrization, the presence of the rip current cell combined with the longshore 

modulation in the wave forcing can drive a longshore current.  
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IV. AN APPLICATION TO LINEAR DEPTH PROFILE 
 To make sense of the rigorous mathematical derivations and formulations we then suppose that 

xh = . Then immediately the solutions of equation (41) in the shoaling zone is  

 ).()(=)( 1011 KxxICKxxKCxX   

Since 1I  becomes unbounded at =x , the boundary condition 0X  as x  gives 0=0C , and so 

we get that  

 .>,)(=)( 11 bxxKxxKCxX (56) 

The behavior of the Bessel functions depict the rip-current character which decays exponentially away 

from the breakerline, on the scale 
1K . It is interesting to note here that the bottom slope   does not appear in 

this solution at all. In the surf zone, the boundary condition (54) implies that as 0x , 
2

0)( xAxF  . We 

shall make the approximation that the shoaling zone has a small cross-shore width, in which case it is easily 

seen that the right-hand side of (55) is much smaller that the left-hand side, and is )( 3xO . Approximating the 

right-hand side accordingly we get that  

 ,=
1 4

0

2 xAFKF
x

F xxx   (57) 

 where 
2=  C . This is useful, as the solutions of the homogeneous equation on the left-hand side are known, 

namely )(= 1 KxxIja  and )(= 1 KxxKjb . By the variation of parameters one gets  

 ,)()(=)( 21 baba jCjCjxBjxAxF   (58) 

 noting that xjjW ba =),( , where  

 .=)(,=)( 3

0
0

3

0
0

dxxAjxBdxxAjxA a

x

b

x

    (59) 

 The boundary condition at 0=x  shows that 0,=2C  and the normalization of F  as 0x  implies that 

.2= 01 AkC  It remains to apply the boundary condition at bxx =  which then yields   (that is C ). From 

equations (58), (59) one gets  

 ).
24

(1
4

2

0

x
xAF


  

 Note that to this order, F  is independent of K  where   scales as 
4

bx  so this small bx  approximation also 

requires that the constant   also be very small. Similarly the right-hand side may be approximated by  

 /2))(ln( 0

22

bb KxxK   

where 0  is Euler’s constant. This implies that to leading order  

 8.4 bx  (60) 

 But this is a bit too simple as can be seen from the consequent expression for  

 ),
3

(1
4

4
2

0

bx

x
xAF   (61) 

 so that actually 0xF  at bxx = , which is too simple. The higher-order terms in A  and B  can be found, 

and then we get that  

 ]).
72

1

12824
[

192

1

8

1
(= 82

86
642

0 xK
xx

xxxAF    

We define 1<<=1
8

1 4  bx  and keeping the required next order terms we get that  

 ,]
12

1
))(ln[(

3

2
= 0

22  bb KxxK   

 



An Analytical Model Of The Rip… 

||Issn 2250-3005 ||                                                   ||September||2013||                                                                           Page 10 
 

 ]).
12

1
)(ln][

9

2
[

91638

1
(1= 02

42

4

62

4

6

4

4
22

0  b

bbbb

Kx
x

xK

x

xK

x

x

x

x
xxAF   

 

Figure  1: Plot of 0)/( AxF  against bxx/ , where 0A  is arbitrary as given by equation (61).The figure shows 

that there is only curve at leading order. We note that there is no dependence on the slope   and only a weak 

dependence on K .We observe that )(xF  reaches a maximum value of 0.7.)/( 0 AxF  Beyond this point 

)(xF  may probably decrease monotonically. 

   Next for the y -independent component, we need to solve for )(xG  from(53). As above, we 

approximate 
2

0= xAF , and we use the empirical expression /8= 22

0 hF  . This yields  

 
xA

g
CGxZ

x
Z xxx

0

22
22

16

5
=

1 
   (62) 

 There is a singularity at 0=x , which can be analyzed by setting 
2= xu  so that (62) becomes  

 ,
16

5
=4

3/2

0

23

uA

g
ZZuu


   (63) 

 where we have put 0>=    and the full solution is  

 ])
2

[sin
2sin

1
(

12

5
=

2

2

0

22

bb

b

x

x

x

x

A

xg
Z 


 (64) 

 Finally the complete the stream function )(xG  is found by integrating hZGx =  subject to the boundary 

condition that 0=G  at bxx = . Thus we get that, for bxx <<0 ,  

 .)
2tan22

1

3

1
]

2
[cos

2sin22

1

3
(

12

5
=)(

2

2

3

3

0

323


bb

b

x

x

x

x

A

xg
xG


 (65) 

 Note in particular that 0(0)G  and is the net mean longshore mass transport in the rip current system.  

 

    

Figure  2: Depicts the plots of normalized )(xZ  and )(xG  given by equations 64 and 65 where each is 

normalized by 0

22 /125 Axg b  and 0

23 /125 Ag   respectively with 0A  arbitrary. Observe that in the 

figure [2] there is a small region of reversed flow near the breaker line. 

   

  The combined expressions (56, 61, 65) complete the solution, where we recall that the constant C  is 

given by (60) (since 
2=  C ), or their respective higher-order corrections. Note that the amplitude of )(xF  

at bxx =  is given by  

 .)(=)( 11 bbb KxKxCxF  

On using the approximation 1<<bKx , and the approximate expression (61), this reduces to  

 .=
3

2
=)( 1

2

0

K

CxA
xF b

b  

The rip-current system contains a free parameter 0A  or its equivalent. We choose to define this free parameter 

to be the value of )( bxF  and normalize the full solution by this value. Thus we get from (40, 42) in bxx > , 

and (45, 61, 65) in bxx <  that the normalized streamfunction n  is given by  

 ,>,)(sin
)(

)(
= b

b

n xxforKy
xX

xX
  (66) 
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 .<<0,
(0)

)(
sin

)(

)(
= b

b

n xxfor
G

xG
RKy

xF

xF
  (67) 

 Here )((0)/= bxFGR  is a free parameter. Thus a larger (smaller) R  decreases the circulation of the rip-

current system  vis-a-vis that of the longshore current component. From (61, 65) we find that here  

 .)
2tan22

1

3

1
(

8

5
=

2

0

23


A

xg
R b

 (68) 

 Note that with all other parameters fixed, a larger (smaller) slope   increases (decreases) R . In order to 

estimate typical values for R  we note that from (61) the longshore velocity field in the “ )(sin Ky ”-component 

scales as /= 0AVc , while the longshore component then scales with cRV . Taking account of the actual 

numerical values in the expressions given above, we find that a suitable values are 0.1R . Plots of n  are 

shown in figures 3, ??, 4 for 20.5,0.2,0.1,0.02,= R  respectively, with 0.2=bKx  (noting that our 

present theory requires that bKx  is small). 

   

Figure  3: Plot of the rip current streamlines for a linear depth profile, given by equation (67) where )(xF  and 

)(xG  are equations (61) and (65) respectively for 0.02= R  in the left panel and 0.1= R  in the right 

panel 

    

Figure  4: As for figure 3 but 0.5= R  in the left panel and 0.2= R  in the right panel 

   

 From the plots in figures 3, ?? we see that as || R  increases, the core of the rip current circulation 

moves from the shoaling zone towards the surf zone. The reason for this is that the solution we have constructed 

is essentially a free vortex defined by KyxX sin)(  in the shoaling zone bxx > , and KyxF sin)(  in the surf 

zone bxx < , perturbed by a longshore component )(xG  in the surf zone. Since 0<R , this longshore 

component opposes the vortex flow in the cell <<0 Ky  but is in sympathy for  2<< Ky . This has 

the effect of moving the vortex cell further offshore in the sector  2<< Ky  relative to the sector 

<<0 Ky . Note that || R  increases as the wave forcing increases, or as the slope   increases, or as the 

depth bx  at the breaker line increases.  

 

V. CONCLUSION 
 We described qualitative solutions for rip currents which are essentially free vortices in both zones. 

The free vortex in the surf zone is perturbed by a longshore modulation in the wave forcing. Rip current cell 

combining with the longshore modulation in the wave forcing can drive longshore currents along the beach. 

Thus the dynamics of the shoaling zone is only dependent on the state-state wave energy equation.The wave 

forcing in the surf zone sets the wave activities different from those of the shoaling zone. To determine wave 
forcing in the mean vorticity equation we assume that the wave angle becomes smaller. We also note here that 

the component of the radiation stress in the y  momentum remains unchanged across the entire flow domain. 

This shows that it is only the x  component of the radiation stress that play a leading role in the wave forcing. 

However, wave forcing encountered in the surf zone has an unmodulated term that does not play a role in the 

vorticity equation but only contribute to wave setup.To ensure continuity of the streamfunctions in the shoaling 

zone we match the solution at the breakerline by a matching condition with appropriate boundary conditions. 

Thus the rip currents solution in the surf zone is provided by the terms in the matching condition. The terms in 

the matching condition has a cross-shore width and a modulated longshore component. The cross-shore width 

was determined by the application of perturbation method and variation of parameter. It would to interesting to 

examine the effect of friction on the rip currents.  
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